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By capturing the correct geometrical features, the fundamental-measure free-energy density functional [Y.
Rosenfeld, Phys. Rev. Lett. 63, 980 (1989); J. Chem. Phys. 98, 8126 (1993)] leads to an accurate description
of the general inhomogeneous simple (“atomic”) fluid. It is based on the convolution decomposition of the
excluded volume for a pair of spheres in terms of characteristic functions for the geometry of the individual
spheres. By relating that convolution decomposition for spheres with the Gauss-Bonnet theorem for general
convex bodies, the fundamental-measure functional is made applicable to fluids of asymmetric molecules.

PACS number(s): 61.20.Gy, 64.10.+h, 61.30.Cz

Density functional methods have received increasing at-
tention in recent years, and achieved a fair amount of success
and sophistication in applications to inhomogeneous classi-
cal fluids [1]. The idea is to express the free energy as a
functional of the average one-body density p(r) from which
all the relevant thermodynamic functions can be calculated.
The most successful functionals are those based on a coarse-
graining procedure whereby weighted densities are con-
structed as averages of the true density profiles [1]. In con-
trast to the many developments in density functional theory
of simple (“‘atomic’) fluids [1], the corresponding theory for
molecular fluids is at a more rudimentary stage [2], as ex-
pected in view of the increase in complexity. Ingenious ad
hoc modifications [3] of the hard-sphere functional were re-
quired to make it applicable for hard-body liquid crystals. In
turn, an alternative kind of weighted-density functional was
derived recently for general inhomogeneous simple fluid
mixtures [4—7], which keeps the geometric features to the
forefront. Based on the fundamental geometric measures of
the particles [8], it was developed a priori in the geometrical
language applicable to general convex particles, yet derived
by using geometric relations which are specific for spheres.
The key was the convolution decomposition [4] of the char-
acteristic function for the pair excluded volume of two
spheres, in terms of characteristic functions for the individual
spheres. The fundamental-measure functional has been tested
(directly and also implicitly) very successfully, for a variety
of hard and soft pair interactions and external potentials, by
comparison with computer simulations of density profiles for
a large variety of situations where size or packing effects
play an important role [6,7,9—13], and by comparison with
experiments on colloids which address the challenging ques-
tion of phase separation in asymmetric binary hard-sphere
mixtures [4]. It appears that by capturing the correct geo-
metrical features, the fundamental-measure hard-sphere
functional leads to an accurate description of the inhomoge-
neous simple fluid. The extension of this functional to mo-
lecular (“complex”) fluids is now made possible by uncov-
ering the relation between the convolution decomposition for
spheres [4] and the Gauss-Bonnet theorem [14] for the ge-
ometry of convex bodies. This provides (i) a free-energy
functional for hard particles, for which the accurate
fundamental-measure functional for hard spheres is just a
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special case; (ii) a simple geometric test for its expected
accuracy; and (iii) makes this powerful general method in
density functional theory [6,7] applicable to fluids of asym-
metric molecules.

Consider a general fluid of hard convex bodies with
one-particle densities {p;(r)}. For notational simplicity adopt
the discrete representation for polydispersity where
an object i is considered distinct from j if they differ in
any of their physically relevant characteristics, such as size,
shape, or orlentatlon in space Let R(H ¢) be the radius
vector from the ‘“center” of particle i to its surface,
R;=|R;(6,¢)| (= constant for sphercs) and let 1; denote
the radius vector to the “center.” The interaction potentlal
&; J(|r, i) between two hard bodies i and j is infinite if they
overlap and zero otherwise, and the Mayer f function
f,}(]r,1|) exp[— qSU([r,JI)/kBT] characterizes the pair ex-
cluded volume,

fij(l;ijl):o
fij(|;ij|)=_1

for iNj=0,

(1)
for iNj+J.

Here ;,- j=;j—;,-, iNj is the intersection of the bodies, and
& denotes the empty set. For spheres, f; J(lr, D
=—0(r ,J] (R:*R;)), where ©(x) is the unit step func-
tion, ®(x>0)=0, ®(x<0)=1. The motivation for the
fundamental-measure description [8] is to interpolate be-
tween the low density (near ideal gas) limit described by the
pair excluded volume (two-particle diagram) and the ideal
liquid asymptotic limit [15] characterized by one-particle ge-
ometries. Thus the following general excess (over ideal gas)
free-energy functional is postulated [4—6]:

"—[{"'“—)}] f dx B[{n (D], 2

where it is assumed that the excess free-energy density P is
a function of only the system averaged fundamental geomet-
ric measures of the particles,

no(x)=2 f pi(x )W (x' —x)dx’. 3)
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The weighted densities na(;() are dimensional quantities
with dimensions [7,]=(volume)(*~3)” where 0<a=<3, and
provide a functional basis set for expanding the function ®
which has dimension (volume)™!. The weight functions
w,(”) are characteristic functions for the geometry of the par-
ticles, and are determined [4—6] by expanding the Mayer
two-particle function in terms of characteristic functions for
the individual particles. A unique solution was found for the
special case of spheres with a convolution decomposition
involving a minimal number of different weight functions

(4]:
> — (0 3 0 3
~ £l =w®ew® +w®ow®
D w4 wDew?
tw;ew T tw;  @w;

— WD ew(D—w M gwVD)
)

where the convolution product
witewr= f wOGE=1) - wP(x-1)dx ()

also implies the scalar product between vectors. This mini-
mal weight-function space contains only three functions: two
scalar functions representing the characteristic functions for
the volume and the surface of a particle and a surface vector
function

w53)(r) = @(r_Ri)’
w@()=¥w(r)|= 8(—R,), ©

-

- - - T
w20 =Yw(r)= - 8(r—Ry).

The other weight functions appearing in Eq. (4) are propor-
tional to these three, and are given by

()3 )7
. w;(r) . owAr
W(O)(r)= - > w(l)(r)= : ( ) >
¢ 47R? ! 4mR;
(7

- (v2),*

g,(vn(;):wi_(r)

' 47TR, ’

The following excess free-energy density was then derived

[4]:

¢=¢S+q)y, (8)
3
b= nin; ny
s__n01n(1_n3)+ 1—n3 2477(1_"3)2 ’ (9)
ny; -0 ny;-n
®,-— | nv2+”2( v1-Dy2) (10)

1-n;  8m(1—nj3)?%/"

As long as the convolution decomposition, Eq. (4), as is but
with a suitable genetalization of the weight functions (6) and
(7), remains a good approximation for the particles compos-
ing the fluid, this same ®[{n,(x)}] as a function of the
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FIG. 1. Intersecting spheres. See the text.

fundamental weighted densities applies to the general hard-
body fluid. The generalization of Eq. (4) as given below is an
approximation, and as such is not limited to convex bodies.
However, the mathematical derivation, using methods of dif-
ferential geometry [14], is restricted to convex bodies.

Consider a body i, denote its surface by di, and let n; be
the outward unit normal to that surface. Denote by «{), x{
the principal curvatures of the surface of the body i at any
point. The first curvature of the surface of the body,
H;= %(Kff)+ Kg,i)), is the mean of the principal curvatures,
and the second curvature (also called the Gaussian curva-
ture), Ki=Kf,i)K§,i), is their product. Consider a curve C
drawn on the surface. The circular curvature of the curve C
is denoted by «, and the geodesic curvature of the curve at a
given point on the surface is given by Kg)=K sinw;. The
angle w; is the normal angle of the curve, namely, the angle
between its principal normal i and the normal of the surface
n; at the same point. Kg) is zero when C is a geodesic. For
spheres (see also Fig. 1) the curvatures )= «{)
=H;=1/R;, K;= 1/R,~2 are constant on the surface. Let S be
a simply connected portion of a surface whose boundary is
the closed curve C with arc length s. Let «, be the geodesic
curvature of C and let K be the Gaussian curvature of S,
then [14] (Gauss-Bonnet theorem)

J Kgds+f f K dA=2m, (11)
c s

where dA is the element of area, and ds the element of arc.
The integral Gaussian curvature for any convex body i is
equal to 47:

G(i)=f Li KdA;=4. (12)

The intersection of two convex bodies is a single convex
body, so that

fij(l;i_;j|)=—G(inj)/47T. (13)

The intersection diNj is the surface of i which is inside j,
and the intersection diNdj consists of closed curves which
are shared by the surfaces of i and of j. In the simple case
(e.g., the spheres above) when the intersection of i and j
produces only one intersection curve connecting the two
pieces of iNj, we apply the Gauss-Bonnet theorem [Egq.
(11)] to each piece separately, we then combine the results,
and use Eq. (12) to get
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G(mj)=4qr=f K,.dA,-+f KdA;

Jinj ajNi

- j (74 k)ds. (14)
diNadj

With the contributions from all connected pieces of the sur-
face integral of K plus the integral of the geodesic curvatures
(74 k() of all the boundary curves, Eq. (14) holds also
when there is more than one intersection curve, or when
there is no intersection curve (one body is completely inside
the other).

The convolution decomposition for spheres [Eq. (4)] turns
out to be just a special case of the Gauss-Bonnet theorem
[Eq. (14)] for convex bodies. In order to see this, let us
rewrite the convolution decomposition for the spheres using
the above geometric notations. For overlap configurations of
the two spheres, multiply both sides of Eq. (4) by 4, using
(13), and then it reads (term by term)

G(iﬂj)=47r=f f K,-dA,-+f f K;dA;
ainj ajNni

gt
3iNaj ilﬁixﬁj| 3iNaj jlﬁiXﬁjl
- H,—n:ﬁjfis - f Hj n;'.nj;\ds .
singj | |B;X | oingj ;XM
(15)
By using the following relations (Fig. 1):

ﬁ,—-ﬁ,-=—‘cos(wi+wj y |ﬁ,><fl]| =Sin(wi+wj), K_1=R,-COSw,~

=Rjcosw;, Kg)=(tanwi)/Ri , and the identity

1—cos(w;+ w;)

sinw; + sinw;= (cosw;+cosw;) (16)

sin(w; + ;)
in Eq. (15), it becomes identical to Eq. (14). However, Eq.
(15) is exact for spheres but not for general convex bodies.
This is because the expression [Eq. (14)] for G(iNj) for
general convex bodies contains an extra term [absent in (15)]
which cannot be written in a convolution form. That extra
term is exactly zero for spheres [i.e., Eq. (15)], and becomes
significant with increasing deviations from sphericity.

We may thus adopt Eq. (15) as an approximation for gen-
eral hard bodies. It is equivalent to the convolution decom-
position Eq. (4) provided that the following set of six distinct
weight functions for the general hard body i is employed:

wP(1)=0(1—R(6,¢)]),
w@ ()= |VwP(1)| = G~ Ry(6,9)),

w2 (1)=Vw®(1) =1;8(t— Ry(6,)), 17)

- K; - - H; -
wO(D)=—wi?(®, wi(®)==wD,

- - H;. -
w,(Vl)(r)= ﬁwgn)(r).
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For spheres this set reduces to the set given by Egs. (6) and
(7). The mean and Gaussian curvatures, H; ,K;, are not con-
stant on the surface of the general hard body, and six differ-
ent weighted densities have to be calculated separately (com-
pared with the three for spheres). Equations (2), (3), (8)-
(10), and (17) thus define the fundamental measure (FM)
excess free-energy functional for the general hard-body fluid,
fin- When applied to hard spheres, ffy reduces to the hard-
sphere functional [4]. The expected accuracy (relative to that
known for spheres) of fi can be estimated a priori by the
extent to which Eq. (15) is a good approximation for the
particles {i} composing the fluid. It should be noticed that
when the number of space dimensions is an even number,
then the convolution decomposition of the Mayer f function
in terms of geometric weight functions is approximate also
for spheres [5]. How the functional works for the general
hard-body fluid can be gleaned from the accurate
fundamental-measure functional for hard disks [5].

When applied to the homogeneous hard-body fluid
@, =0, fry is independent of the distribution of orientations
and is equal to the form obtained from scaled particle theory
[8]. This indicates that although derived for arbitrary inho-
mogeneous hard-body fluids, fgy is better suited for isotro-
pic fluids. Indeed, even though Eq. (15) is generally approxi-
mate, fry yields the exact second virial coefficient, B;; for
the isotropic hard convex body bulk fluid [16]. Using (17),
integrate (4) to obtain

B,;=H{V()+SHRG)+RGHS(H)+V(j)l,  (18)

where V(i), S(i), and R(i)=(1/4m)f ;HdA; are, respec-
tively, the volume, surface area, and mean radius of the body
i. The functional ff, predicts a third virial coefficient for the
one-component isotropic hard spherocylinder bulk fluid
which is only 10% smaller than the exact coefficient, even
for a large length over width ratio, L/D=6. As can be
gleaned from related work [8,18], fiy yields an accurate
equation of state for isotropic bulk fluids. Using the scaled
field particle diagrammatic representation it was possible to
obtain analytic geometric approximations for the direct cor-
relation functions (DCF’s) and cavity distribution functions
of the general isotropic bulk hard-particle fluid, conformal to
those for the hard-sphere fluid mixture [8]. Using the second
functional derivatives of fg, these DCF’s are approximately
reexpressed in terms of convolutions of the weight functions.
Thus, when truncated at second order, fgy reduces to a ver-
sion of a recent functional which was employed successfully
[2] for the inhomogeneous fluid of hard linear molecules
(spherocylinders, ellipsoids). On the basis of these results it
is expected that as long as the aspect ratio of the molecules
(e.g., the ratio between the longest and shortest distances
across the molecule) is not too large (e.g., smaller than about
5), then f3y, for isotropic hard-particle fluids will be of an
accuracy comparable to that it demonstrated for the spheres.

The system of parallel hard ellipsoids (PHE’s) is related
to the hard spheres by an anisotropic mapping [17]. By ap-
plying that mapping on the weight functions (6) and (7), to
obtain the PHE weight functions, and on Eq. (4) we find that
the convolution decomposition holds exactly also for PHE’s.
Correspondingly, the resulting functional ffy pyy yields the
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exact analytic solution of the Percus-Yevick equations for the
DCF’s for the PHE fluid, and thus predicts correctly the ab-
sence of a smectic phase for the PHE fluid. The PHE’s pro-
vide a very useful reference system for aligned particles [3].
Comparison with the set (17) shows that it can be improved
by treating the H; and K; as “free” orientation dependent
parameters on the surface, which can be determined by im-
posing the equality (15) for the bodies in question (i.e., by
imposing the exact second virial coefficient for arbitrary dis-
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tribution of orientations for the homogeneous fluid). Finally,
the charge contributions to the direct correlation functions of
charged hard-body fluids can also be discussed [15,6] in
terms of the fundamental measures. The simple geometric-
electrostatic description in the Onsager-bound strong-
coupling limit is a good starting point.
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